53,235 research outputs found

    On the Feasibility of Linear Interference Alignment for MIMO Interference Broadcast Channels with Constant Coefficients

    Full text link
    In this paper, we analyze the feasibility of linear interference alignment (IA) for multi-input-multi-output (MIMO) interference broadcast channel (MIMO-IBC) with constant coefficients. We pose and prove the necessary conditions of linear IA feasibility for general MIMO-IBC. Except for the proper condition, we find another necessary condition to ensure a kind of irreducible interference to be eliminated. We then prove the necessary and sufficient conditions for a special class of MIMO-IBC, where the numbers of antennas are divisible by the number of data streams per user. Since finding an invertible Jacobian matrix is crucial for the sufficiency proof, we first analyze the impact of sparse structure and repeated structure of the Jacobian matrix. Considering that for the MIMO-IBC the sub-matrices of the Jacobian matrix corresponding to the transmit and receive matrices have different repeated structure, we find an invertible Jacobian matrix by constructing the two sub-matrices separately. We show that for the MIMO-IBC where each user has one desired data stream, a proper system is feasible. For symmetric MIMO-IBC, we provide proper but infeasible region of antenna configurations by analyzing the difference between the necessary conditions and the sufficient conditions of linear IA feasibility.Comment: 14 pages, 3 figures, accepted by IEEE Trans. on Signal Processin

    On the false positives and false negatives of the Jacobian Matrix in kinematically redundant parallel mechanisms

    Get PDF
    The Jacobian matrix is a highly popular tool for the control and performance analysis of closed-loop robots. Its usefulness in parallel mechanisms is certainly apparent, and its application to solve motion planning problems, or other higher level questions, has been seldom queried, or limited to non-redundant systems. In this paper, we discuss the shortcomings of the use of the Jacobian matrix under redundancy, in particular when applied to kinematically redundant parallel architectures with non-serially connected actuators. These architectures have become fairly popular recently as they allow the end-effector to achieve full rotations, which is an impossible task with traditional topologies. The problems with the Jacobian matrix in these novel systems arise from the need to eliminate redundant variables when forming it, resulting in both situations where the Jacobian incorrectly identifies singularities (false positive), and where it fails to identify singularities (false negative). These issues have thus far remained unaddressed in the literature. We highlight these limitations herein by demonstrating several cases using numerical examples of both planar and spatial architectures

    PMU-Based Estimation of Dynamic State Jacobian Matrix

    Full text link
    In this paper, a hybrid measurement- and model-based method is proposed which can estimate the dynamic state Jacobian matrix in near real-time. The proposed method is computationally efficient and robust to the variation of network topology. A numerical example is given to show that the proposed method is able to provide good estimation for the dynamic state Jacobian matrix and is superior to the model-based method under undetectable network topology change. The proposed method may also help identify big discrepancy in the assumed network model.Comment: IEEE International Conference on Circuits and Systems (ISCAS) 201

    Configuration control of seven-degree-of-freedom arms

    Get PDF
    A seven degree of freedom robot arm with a six degree of freedom end effector is controlled by a processor employing a 6 by 7 Jacobian matrix for defining location and orientation of the end effector in terms of the rotation angles of the joints, a 1 (or more) by 7 Jacobian matrix for defining 1 (or more) user specified kinematic functions constraining location or movement of selected portions of the arm in terms of the joint angles, the processor combining the two Jacobian matrices to produce an augmented 7 (or more) by 7 Jacobian matrix, the processor effecting control by computing in accordance with forward kinematics from the augmented 7 by 7 Jacobian matrix and from the seven joint angles of the arm a set of seven desired joint angles for transmittal to the joint servo loops of the arm. One of the kinematic functions constraints the orientation of the elbow plane of the arm. Another one of the kinematic functions minimizes a sum of gravitational torques on the joints. Still another kinematic function constrains the location of the arm to perform collision avoidance. Generically, one kinematic function minimizes a sum of selected mechanical parameters of at least some of the joints associated with weighting coefficients which may be changed during arm movement. The mechanical parameters may be velocity errors or gravity torques associated with individual joints
    corecore